145 research outputs found

    Rationality of conformally invariant local correlation functions on compactified Minkowski space

    Get PDF
    Rationality of the Wightman functions is proven to follow from energy positivity, locality and a natural condition of global conformal invariance (GCI) in any number D of space-time dimensions. The GCI condition allows to treat correlation functions as generalized sections of a vector bundle over the compactification of Minkowski space and yields a strong form of locality valid for all non-isotropic intervals if assumed true for space-like separations.Comment: 20 pages, LATEX, amsfonts, latexsy

    Renormalization of Massless Feynman Amplitudes in Configuration Space

    Full text link
    A systematic study of recursive renormalization of Feynman amplitudes is carried out both in Euclidean and in Minkowski configuration space. For a massless quantum field theory (QFT) we use the technique of extending associate homogeneous distributions to complete the renormalization recursion. A homogeneous (Poincare covariant) amplitude is said to be convergent if it admits a (unique covariant) extension as a homogeneous distribution. For any amplitude without subdivergences - i.e. for a Feynman distribution that is homogeneous off the full (small) diagonal - we define a renormalization invariant residue. Its vanishing is a necessary and sufficient condition for the convergence of such an amplitude. It extends to arbitrary - not necessarily primitively divergent - Feynman amplitudes. This notion of convergence is finer than the usual power counting criterion and includes cancellation of divergences.Comment: LaTeX, 64 page

    Reconstruction of a vertex algebra in higher dimensions from its one-dimensional restriction

    Full text link
    Vertex algebras in higher dimensions correspond to models of quantum field theory with global conformal invariance. Any vertex algebra in higher dimensions admits a restriction to a vertex algebra in any lower dimension, and in particular, to dimension one. In this paper, we find natural conditions under which the converse passage is possible. These conditions include a unitary action of the conformal Lie algebra with a positive energy, which is given by local endomorphisms and obeys certain integrability properties.Comment: 25 pages; v2 fixed typos and expanded some proofs; v3 improved the expositio

    Unitary Positive-Energy Representations of Scalar Bilocal Quantum Fields

    Full text link
    The superselection sectors of two classes of scalar bilocal quantum fields in D>=4 dimensions are explicitly determined by working out the constraints imposed by unitarity. The resulting classification in terms of the dual of the respective gauge groups U(N) and O(N) confirms the expectations based on general results obtained in the framework of local nets in algebraic quantum field theory, but the approach using standard Lie algebra methods rather than abstract duality theory is complementary. The result indicates that one does not lose interesting models if one postulates the absence of scalar fields of dimension D-2 in models with global conformal invariance. Another remarkable outcome is the observation that, with an appropriate choice of the Hamiltonian, a Lie algebra embedded into the associative algebra of observables completely fixes the representation theory.Comment: 27 pages, v3: result improved by eliminating redundant assumptio
    • …
    corecore